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Group-Valued Measures on the Lattice of Closed
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We show there are no non-trivial finite Abelian group-valued measures on the lattice of
closed subspaces of an infinite-dimensional Hilbert space, and we use this to establish
that the unigroup of the lattice of closed subspaces of an infinite-dimensional Hilbert
space is divisible. The main technique is a combinatorial construction of a set of vectors
in R2n generalizing properties of those used in various treatments of the Kochen–
Specker theorem in R4.
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1. INTRODUCTION

A group-valued measure on an orthomodular lattice L is a map f : L → G, of
L into an Abelian group G, that satisfies f (x ∨ y) = f (x) + f (y) for all x, y ∈ L

with x ≤ y ′. There have been numerous studies of group-valued measures on
Boolean algebras, orthomodular lattices, and their generalizations (Avallone and
Hamhalter, 1996; D’Andrea and De Lucia, 1992; De Lucia and Morales, 1998;
Garcı́a Mazarı́o, 2001; Göbel et al., 1996; Navara et al., 1993; Bhashkara Rao
and Shortt, 1991). Additionally, the group-valued measures on an orthomodular
structure L are closely linked to the unigroup of L, a key ingredient in David
Foulis’ recent algebraic approach to non-commutative measure theory (Bennett
and Foulis, 1997; Foulis et al., 1998; Foulis, 2000).

Our purpose here is to study the group-valued measures on the orthomodular
lattices L(H) of closed subspaces of a Hilbert space H (Kalmbach, 1983). Of
course, a great deal is known about the R-valued measures on L(H) (Dvurečenskij,
1993), but little is known about measures from L(H) into other groups. For
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instance, it seems a completely open problem whether there are any Z2-valued
measures on L(R3) beside the two obvious ones.

The only real progress on the type of question we ask was made by Navara and
Pták in (Navara and Pták, 2004) where they showed that any Z2-valued measure on
L(R5) is constant on the atoms (one-dimensional subspaces) of L(R5). It follows
that there are exactly two Z2-valued measures on L(R5)—one that is identically
zero, and another that is given by taking the dimension of a subspace modulo
2. Navara and Pták obtained their result by using a configuration of vectors in
R4 similar to one used by Peres in his treatment of the Kochen–Specker theorem
(Peres, 1993).

The key ingredient in this paper is a combinatorial construction of a set of
vectors in R2n, for any n ≥ 2, that generalizes to higher dimensions properties of
sets of vectors used by Peres and others (Cabello et al., 1999; Kernaghan, 1994;
Mermin et al., 1990; Peres, 1993; Smith, 2004) in discussions of the Kochen–
Specker theorem in R4. Using these vectors we are able to show that if m ≥ 2n + 1,
then all Zn-valued measures on L(Rm) are built in an obvious way from the
dimension function on L(Rm). Indeed, we strengthen this result somewhat to
provide such a characterization of Znk -valued measures on L(Rm) whenever k ≥ 1
and m ≥ 2n + 1.

These results are then used to show that for H an infinite-dimensional Hilbert
space and G a finite Abelian group, all G-valued measures on L(H) are constantly
zero. While this is far from a characterization of the group-valued measures on
L(H), it does provide sufficient information for us to conclude that for H an
infinite-dimensional Hilbert space, the unigroup of L(H) is a divisible group.

While all our results carry over directly to complex Hilbert space setting, for
economy of presentation, we state our results only for real Hilbert spaces.

2. A CONSTRUCTION OF A SET OF VECTORS IN R2N

We first introduce some terminology. Suppose V is an n-dimensional vector
space over the reals. A block B of vectors in V is a set of n pairwise orthogonal
non-zero vectors in V . A k-simplex S in V is a set of k + 1 non-zero vectors in
V such that (i) all vectors in S have the same length, and (ii) any two distinct
vectors in S have the same inner product. The key technical result of this paper,
Lemma 1, uses two orthogonal n-simplices to construct blocks in R2n with certain
intersection properties.

Lemma 1. For any n ≥ 2 there is a set Z of vectors in R2n such that

1. Z has 2(n + 1)2 vectors.
2. Z can be covered by a family of (n + 1)2 blocks Bij where 0 ≤ i, j ≤ n.
3. Each vector in Z occurs in exactly n of the blocks Bij where 0 ≤ i, j ≤ n.
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Proof: Let e0, . . . , en, f0, . . . , fn be an orthonormal basis of R2n+2 and set

e = e0 + · · · + en and f = f0 + · · · + fn.

We consider the 2n-dimensional subspace W of vectors orthogonal to both e and
f . Note that as W is isomorphic to R2n, it is enough to establish our result in W .

For each 0 ≤ i ≤ n define vectors

si = e − (n + 1)ei and ti = f − (n + 1)fi.

We then set S = {s0, . . . , sn} and T = {t0, . . . , tn}.
We claim that S and T are orthogonal n-simplices in W . Indeed, as ‖e‖2 =

n + 1, the inner product e · si = ‖e‖2 − (n + 1) (e · ei) = 0. It follows that each
vector in S, and by symmetry each vector in T , is orthogonal to both e and f .
Thus S and T are subsets of W . The symmetry in the definition of these vectors
yields that S and T are n-simplices in W and clearly each vector in S is orthogonal
to each vector in T .

We use the simplices S, T to build a set Z of vectors in W and blocks Bij for
0 ≤ i, j ≤ n that cover Z in the desired manner. We first set

r = n−1/2.

Then for each 0 ≤ i, j ≤ n define

uij = rsi + tj and vij = si − rtj .

We then set

Z = {uij , vij : 0 ≤ i, j ≤ n},
and for 0 ≤ i, j ≤ n we define

Bij = {uik : k 	= j} ∪ {vkj : k 	= i}.
Note that Z is a collection of 2(n + 1)2 vectors in W , that each Bij is a

collection of 2n vectors in W and that each vector in Z occurs in exactly n of the
sets Bij . It remains only to show that the Bij are blocks of W , or equivalently, that
the vectors in each Bij are pairwise orthogonal.

For 0 ≤ i ≤ n, as si = e − (n + 1)ei = e0 + · · · − nei + · · · + en we have

‖si‖2 = n2 + n, and similarly ‖ti‖2 = n2 + n.

And for 0 ≤ i 	= j ≤ n we have

si · sj = −(n + 1), and similarly ti · tj = −(n + 1).

Therefore, for k 	= m we have tk · tm = −r2‖si‖2 for each 0 ≤ i ≤ n, giving

uik · uim = (rsi + tk) · (rsi + tm) = r2‖si‖2 + 0 + 0 − r2‖si‖2 = 0.
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Similarly, for k 	= m and 0 ≤ j ≤ n, we have

vkj · vmj = 0.

Finally, if k 	= j and m 	= i, then r(si · sm) = r(tk · tj ) for each 0 ≤ i, j ≤ n, giving

uik · vmj = (rsi + tk) · (sm − rtj ) = r(si · sm) − 0 + 0 − r(tk · tj ) = 0.

Thus, the vectors in Bij are orthogonal, showing each Bij is a block. �

3. RESULTS IN FINITE DIMENSIONS

We next use the vectors created in the previous section to obtain results
about finite group-valued measures on the lattice of closed subspaces of Rn.
By way of notation, we use 〈v〉 for the one-dimensional subspace spanned by
a vector v, and if S, T are orthogonal subspaces of Rn we use S ⊕ T for the
subspace spanned by S and T . Recall that any group-valued measure f satisfies
f (S ⊕ T ) = f (S) + f (T ). We use b (mod n) for the unique natural number a

with a < n and b = kn + a for some integer k, and we let Zn be the finite cyclic
group {0, . . . , n − 1} equipped with the operation of addition modulo n.

Lemma 2. Any Zn-valued measure f on L(R2n) satisfies f (R2n) = 0.

Proof: Use Lemma 1 to obtain a set Z of vectors and a family Bij for 0 ≤ i, j ≤ n

of blocks in R2n such that each vector in Z occurs in exactly n of the blocks Bij .
Enumerate the vectors in each block Bij as vijk where 1 ≤ k ≤ 2n. We then have

∑

ijk

f (〈vijk〉) =
∑

ij

(f (〈vij1〉) + · · · + f (〈vij 2n〉))

=
∑

ij

f (〈vij1〉 ⊕ · · · ⊕ 〈vij 2n〉)

=
∑

ij

f (R2n)

= (n + 1)2f (R2n) (mod n)

= f (R2n).

As each vector in Z occurs n times in the list vijk where 0 ≤ i, j ≤ n, 1 ≤ k ≤ 2n,
∑

ijk

f (〈vijk〉) = n
∑

z∈Z

f (〈z〉) (mod n) = 0.

This establishes the result. �
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Theorem 3. If m ≥ 2n + 1, the Zn-valued measures on L(Rm) are exactly the
maps

f (A) = k · dim(A) (mod n)

for some 0 ≤ k < n.

Proof: For orthogonal subspaces A and B we have dim(A ⊕ B) = dim(A) +
dim(B), therefore each of the indicated maps is a Zn-valued measure on L(Rm).

Suppose that f is any Zn-valued measure on L(Rm) and let u and v be any
non-zero vectors in Rm. As m ≥ 2n + 1 there is a 2n + 1-dimensional subspace
S of Rm that contains u and v. By 〈u〉⊥ and 〈v〉⊥ we shall mean the subspaces of
S orthogonal to u and v respectively. As 〈u〉 ⊕ 〈u〉⊥ = S and 〈v〉 ⊕ 〈v〉⊥ = S,

f (〈u〉) + f (〈u〉⊥) = f (〈v〉) + f (〈v〉⊥).

Note, if T is a subspace of Rm then f restricts to a Zn-valued measure
on L(T ). In particular, f restricts to a Zn-valued measure on L(〈u〉⊥) and on
L(〈v〉⊥). Since 〈u〉⊥ and 〈v〉⊥ are 2n-dimensional, it then follows from Lemma 2
that f (〈u〉⊥) = 0 and f (〈v〉⊥) = 0. Applying this to the above equation then yields
that f (〈u〉) = f (〈v〉).

We have shown that f takes a constant value, say k, on all one-dimensional
subspaces 〈v〉. It follows by additivity that f (A) = k · dim(A) (mod n) for all
subspaces A. �

Corollary 4. If m ≥ 2n + 1, then for any p ≥ 1 the Znp -valued measures on
L(Rm) are exactly the maps

f (A) = k · dim(A) (mod np)

for some 0 ≤ k < np.

Proof: The proof is by induction on p. If p = 1 the result is given by Theorem 3.
Suppose then that p > 1 and f is a Znp -valued measure on L(Rm).

Consider the measure g : L(Rm) → Znp defined by

g(A) = n · f (A) (mod np).

Note that the image of g is contained in the subgroup nZnp consisting of all
elements of Znp that are multiples of n. As nZnp is isomorphic to Znp−1 , it follows
from the inductive hypothesis that g takes a constant value on the one-dimensional
subspaces of Rm. Thus there is some b ∈ nZnp so that for all one-dimensional
subspaces 〈v〉

g(〈v〉) = b.
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As b ∈ nZnp there is some r ∈ Znp with b = nr . We claim that for any
one-dimensional subspace 〈v〉,

r = f (〈v〉) (mod np−1).

Suppose f (〈v〉) = r ′. Then by the definition of g and the fact that g(〈v〉) = b we
have b = nr ′ (mod np). Thus 0 = n(r − r ′) (mod np), giving r = r ′ (mod np−1).

Consider the measure h : L(Rm) → Znp defined by

h(A) = r · dim(A) (mod np).

Then f − h is a Znp -valued measure on L(Rm). Note that for any one-dimensional
subspace 〈v〉 we have h(〈v〉) = r , and therefore

0 = (f − h)(〈v〉) (mod np−1).

Thus the image of f − h is contained in the subgroup np−1Znp of Znp . As np−1Znp

is isomorphic to Zn, the inductive hypothesis (or Theorem 3) yields that f − h

is constant on all the one-dimensional subspaces 〈v〉. Then as f − h and h are
both constant on the one-dimensional subspaces, f is also constant on the one-
dimensional subspaces. The result follows. �

We are not aware of any versions of Theorem 3 or Corollary 4 with m ≤ 2n.

4. RESULTS FOR INFINITE-DIMENSIONAL HILBERT SPACES

We next apply our results to the infinite-dimensional setting. The reader
should consult (Kadison and Ringrose, 1983, pp. 88–94) for background on
infinite-dimensional Hilbert spaces.

Lemma 5. Suppose H is an infinite-dimensional Hilbert space. Then for any
natural number k > 0 there is an ortholattice embedding of L(Rk) into L(H).

Proof: The following is a glorified version of the embedding of L(R2) into
L(R4) that sends a subspace A of R2 to the subspace of R4 consisting of all
vectors (c0, c1, c2, c3) for which both (c0, c1) and (c2, c3) belong to A.

Note that each ordinal α can be uniquely expressed as α = β + n where β

is a limit ordinal and n is a natural number. If α = β + n is such a representation,
we say 0 = α(mod k) if 0 = n(mod k).

Suppose H is of dimension κ and {vα : α < κ} is an orthonormal basis of H.
Each v ∈ H can be uniquely expressed as a sum v = ∑{cαvα : α < κ} for some
choice of scalars cα (with all but countably many being zero). For such v we define
for each α < κ with 0 = α (mod k) a vector vα ∈ Rk by setting

vα = (cα, . . . , cα+k−1).
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We then define a map � from L(Rk) to L(H) by setting

�(A) = {v ∈ H : vα ∈ A for all α < κ with 0 = α (mod k)}.
It is routine to verify that � is an ortholattice embedding. �

Theorem 6. If H is an infinite-dimensional Hilbert space, then any group-
valued measure f : L(H) → G into a finite Abelian group G identically zero.

Proof: We first show any group-valued measure g : L(H) → Zn into a finite
cyclic group is identically zero. Suppose S is an infinite-dimensional closed sub-
space of H. Then L(S) is the interval [{0}, S] in the orthomodular lattice L(H),
and therefore g restricts to a group-valued measure from L(S) to Zn. By Lemma 5,
there is an ortholattice embedding i of L(R2n) into L(S). Then, as g ◦ i is a Zn-
valued measure on L(R2n), it follows from Lemma 2 that (g ◦ i)(R2n) = 0, hence
g(S) = 0. Suppose S is a finite-dimensional subspace of H. Then S⊥ and H are
infinite-dimensional, giving g(S⊥) = 0 = g(H). But g(S) + g(S⊥) = g(H), and
it follows that g(S) = 0.

Suppose f : L(H) → G is a group-valued measure into a finite Abelian
group G. As G is isomorphic to a direct sum of finite cyclic groups, an element
a ∈ G is equal to zero if, and only if, h(a) = 0 for every homomorphism h : G →
Zn from G into a finite cyclic group. Suppose then that S is a closed subspace
of H and that h : G → Zn is a homomorphism. Then h ◦ f : L(H) → Zn is a
group-valued measure, hence h ◦ f is identically zero. It follows that h(f (S)) = 0
for each such homomorphism h, and therefore that f (S) = 0. �

In David Foulis’ study of algebraic measure theory (Bennett and Foulis, 1997;
Foulis et al., 1998; Foulis, 2000), a type of generalized orthomodular structure
L, known as an effect algebra, replaces a Boolean algebra as the basic measure
carrying vehicle. One then attempts to study L and its measures by constructing a
partially ordered Abelian group U with order unit u such that (i) L is isomorphic to
the unit interval of U , (ii) U is generated as an Abelian group by its unit interval,
and (iii) the group-valued measures on L are exactly the restrictions of group
homomorphisms ϕ : U → G on U .

One cannot find such an ordered Abelian group U for every effect algebra
L, but if such U can be found, it is unique up to isomorphism and is called the
universal group, or unigroup, of L. It is known that if L is the orthomodular lattice
of closed subspaces of a Hilbert spaceH, then L has a unigroup, however no useful
description of this unigroup is known, except in the case that H is dimension two.
Below we provide a small step toward such a description in the case that H is of
infinite dimension. Recall that an Abelian group G is called divisible if for each
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g ∈ G and each natural number n there is an element h ∈ G with nh = g (here
2h = h + h, etc.).

Theorem 7. If H is an infinite-dimensional Hilbert space, then the unigroup of
L(H) is a divisible group.

Proof: It is well known that an Abelian group is divisible if, and only if, every
homomorphism from it into a finite Abelian group is identically zero (Fuchs, 1958).
Let U be the unigroup of L(H) and suppose f : U → G is a homomorphism from
U into a finite Abelian group G. Then the restriction of f to L(H) is a group-
valued measure, so by the Theorem 6 the restriction of f to L(H) is identically
zero. Then as L(H) generates U , it follows that the homomorphism f must be
identically zero. �

5. CONCLUDING REMARKS

Our results are the first steps toward determining the group-valued measures
on the orthomodular lattice of closed subspaces of a Hilbert space. We believe a
solution to the following question would yield further progress.

Question 1. Are the constant function zero and the dimension function modulo
two the only Z2-valued measures on L(R3)?

Consideration of various proofs of Gleason’s theorem and the Kochen–
Specker theorem did not lead us immediately to a positive solution to Question 1.
If one is interested in attempting to find a negative solution to this question, it
may be worthwhile to make note of various results on coloring the rational rays
in R3 (see Havlicek et al., 2001 for access to the literature). These results provide
a real-valued measure taking values 0 and 1 on the orthomodular lattice L(Q3) of
subspaces of Q3. Of course, this result is of no benefit in producing a real-valued
measure taking values 0 and 1 on L(R3) (Gleason’s theorem, or the Kochen–
Specker theorem, shows there are none!), but there is at least the possibility that it
may help in producing a non-trivial Z2-valued measure on L(R3).

Further work toward a characterization of the unigroup of the orthomodular
lattice of closed subspaces of a Hilbert space would also be desirable. Here there
is a natural question to consider.

Question 2. If dimH ≥ 3 is the unigroup of L(H) naturally isomorphic to the
subgroup of the group of self-adjoint operators generated by the projections?

We note that a negative answer to the first question would imply a negative
answer to the second for L(R3). Indeed, a negative answer to the first would yield
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a Z2-valued measure on L(R3) with f (〈a〉) = 0 and f (〈b〉) = 1 for some orthog-
onal vectors a, b. Using a unitary transformation if necessary, we can assume
a = (1, 0, 0) and b = (0, 1, 0). Set c = (1,

√
3, 0) and d = (1,−√

3, 0) and let
A,B,C,D be the projections onto 〈a〉, 〈b〉, 〈c〉 and 〈d〉, respectively. With some
elementary linear algebra we see

A + 3B = 2C + 2D.

It follows that f cannot possibly be lifted to a homomorphism f ∗ from the
subgroup of the group of self-adjoint operators generated by the projections to Z2

as any such homomorphism f ∗ would satisfy

f ∗(A + 3B) = f (〈a〉) + 3f (〈b〉) = 1,

and

f ∗(2C + 2D) = 2f ∗(C) + 2f ∗(D) = 0.

A positive solution to Question 2 seems plausible, and would provide a nice
link between the self-adjoint operators on H and the orthomodular lattice L(H).
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